
Calculations were done for large H and showed that the features of cloud evolution discussed 
above (Figs. 1-3) also apply when the cloud falls in an unbounded space; the curves shown in 
Figs. 4, 5 apply quantitatively to this case. 

LITERATURE CITED 

i. N.A. Fuks, Mechanics of Aerosols, [in Russian], Izv. Akad. Nauk SSSR, Moscow (1955). 
2. G.M. Makhviladze and O. I. Melikhov, "Numerical study of the descent of a system of 

monodisperse particles onto a plane horizontal surface" [in Russian], Preprint No. 
191, Inst. of Problems of Mechanics, Academy of Sciences of the USSR, Moscow (1981). 

3. A.L. Dorfman, "Numerical study of two-phase flow with a viscous carrier phase" [in 
Russian], Izv. Akad. Nauk. SSSR, Mekh. Zhidk. Gaza, No. 3 (1981). 

4. Yu. N. Kul'bitskii, "Calculation of the motion of a system of particles in a uniform 
viscous flow with a hydrodynamical interaction" [in Russian], Preprint No. 4, Section 
of Mechanics of Nonuniform Media, Moscow (1980). 

5. R.I. Nigmatulin, Foundations of the Mechanics of Heterogeneous Media [in Russian], 
Nauka, Moscow (1978). 

6. G.M. Makhviladze and S. B. Shcherbak, "Difference scheme for the numerical study of 
nonstationary two-dimensional motion of a compressible gas" [in Russian], Preprint 
No. 113, Inst. of Problems of Mechanics, Academy of Sciences of the USSR (1978). 

7. G.M. Makhviladze and S. B. Shcherbak, "Numerical study of nonstationary spatial mo- 
tion of a compressible gas" [in Russian], Inz.-Fiz. Zh., 38, No. 3 (1980). 

8. N.N. Yanenko, Practical Step Methods of Solving Multidimensional Problems of Mathe- 
matical Physics [in Russian], Nauka, Novosibirsk (1967). 

9. R. Skorer, Aerodynamics of Ambient Media [in Russian], Mir, Moscow (1980). 

TWO-PHASE THREE-COMPONENT FILTRATION WHEN OIL IS DISPLACED 

BY A SOLUTION OF AN ACTIVE ADDITIVE 

P. G. Bedrikovetskii UDC 532.546 

Among the new methods for increasing the output of oil from rock strata, an important 
place is occupied by processes in which the oil is displaced by solutions of active addi- 
tives: carbon dioxide gas or surface-active substances. Self-similar solutions were ob- 
tained earlier for the case of frontal displacement of the oil by dilute solutions of the 
additives [i, 2]. At high concentrations of a pumped-in solution the transition of the 
additive from the injection phase to the oil phase leads to an increase in the mobility of 
the oil and has a substantial effect on the displacement process. In [3] solutions were 
obtained for the problem of forcing oil out with solutions of any concentrations, on the 
assumption that the total volume of the phase remained constant when dissolution took place, 
and we obtained a number of solutions for problems of frontal displacement. In the present 
study this system of equations is considered in connection with an active additive which 
can be dissolved in water and oil but does not cause interphase mass exchange between the 
water and oil components. We investigate the problem of the decomposition of an arbitrary 
discontinuity, and we obtain self-similar solutions for problems of frontal displacement 
with arbitrary values of flooding of the stratum and any forms of the distribution function 
of the additive between the phases. From the solution of the problem of the structure of 
the discontinuity, we obtain the conditions for stability of the generalized solution. We 
investigate typical interactions of simple waves and shock waves, and we obtain solutions 
for problems involving displacement of the oil by a dose of the solution of active additive 
forced through the stratum by water. 

I. Analysis of the Initial System of Equations. In the displacement process the ad- 
ditive is distributed between the water and oil phases. The system of equations of a two- 
phase three-component filtration consists of the equation of discontinuity for the water 
component, the oil component, and the active component [5]. When we consider large-scale 
displacement processes, we disregard the capillary jump in pressure between the phases, 
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the diffusion of the additive, and the nonequilibrium distribution of the additive between 
the phases. We disregard the adsorption of the additive. We assume that in the process of 
distribution of the additive between the phases the total volume of the mixture remains 
constant: 

PI = ~A +(I ~- C)pw, Piz = ~PA + (i -- ~)Po, 

where PI, @zI are the densities of the water and oil phases; PA, Pw , and Po are the densi- 
ties of the additive, water, and oil components; c and ~ are the volumetric concentrations of 
the additive in the water and oil phases. Then the function relating the mass concentrations 
of the additive in the oil and water phases, which exists in the state of thermodynamic- 
equilibrium distribution of the additive between the phases, can be rewritten in the form of 
a function connecting the volumetric concentrations -- the function giving the distribution 
of the additive between the phases, ~ = ~ ( c ) .  The total flow rate of the phases remains 
constant, and each of the equations of discontinuity for the components is a consequence of 
the other two. The system of two-phase three-component filtration takes the form [4] 

{ ( t  - c) 8} ..L 
= ~'  o= { ( ~ - 0 F } = ~  (1.l) 

o { c f + ~ ( l  f ) } = O ,  2.o, {cs + ~ (t - s)} + ~ 

where x is the ratio of the pore volume, calculated over the stratum from a injection bore- 
hole (gallery) to the volume of the dose; t is the ratio of the volume of the pumped-through 
liquid to the volume of the dose; s(x, t) is the saturation of the pore space with the water 
phase; F(s, c) is the Buckley--Leverett function, equal to the fraction of the water phase in 
the flow. In Fig. i the curve c = 0 is the graph of the function F = F(s, 0). 

Now we pass in the system (i.i) to the unknowns C W = (i -- c)s (the volumetric concen- 
tration of water in the flow) and U W = (i -- c)F (the volume fraction of water in the total 
rate of filtration of both phases): 

OCwoi + - ~ - = 0 , - ~ 0 U w  0 (aCwd-~p)+~(o:Uw+(p)=O,_ (1.2) 

=(c) = (c - 9) (i  - - c )  -1, ~'(c) > 0, 9(0) = 0.  

The c u r v e s  F = F ( s ,  c ) ,  c = c o n s t ,  c a n  b e  r e c o n s t r u c t e d  i n t o  t h e  c u r v e s  Uw--Uw(C w, c), c = 
constant, by compressionby a factor of 1 -- c along the C W and U W axes. In Fig. i the curve 
c = c o is the graph of the function Uw= Uw(Cw, c~ By virtue of the relation Uw----- 
U~v(C w, c) , we shall regard both (C W, c) and (Cw, U W) as unknowns for the system (1.2). 

The system (1.2) is a hyperbolic system of two quasilinear equations. We shall write 
it in Riemann invariants [6]. 

To the eigenvalues of the hyperbolic system 

~i = OUw/OCw, ~2 = (Uw + ~'la')  (Cw + q/la')-~ 

there correspond the two families of simple waves 

dUw _ aUw dU W Uw + (p'/~' 
dC w -  ~ = ~z, ~ - CW + ~'/~;" = ~= ( 1 . 3 )  
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and the two families of characteristics 

dx/dt = ~1, dI(Cw, Uw)/dt = 0; dx/dt = ~, dc(Cw, Uw)/dt = 0. ( 1 . 4 )  

The i n v a r i a n t  which  i s  c o n s t a n t  a l o n g  t h e  C W c h a r a c t e r i s t i c s  ( t h e  f i r s t  e q u a t i o n  i n  
( 1 . 4 ) )  i s  t h e  a r b i t r a r y  f u n c t i o n  I = I (C W, UW), c o n s t a n t  a l o n g  t h e  t r a j e c t o r i e s  o f  t h e  v e c t o r  
f i e l d ,  which  i s  g i v e n  by t h e  second  e q u a t i o n  i n  ( 1 . 3 ) ,  and v a r y i n g  m o n o t o n i c a l l y  t o  t r a -  
j e c t o r y .  The i n v a r i a n t  which i s  c o n s t a n t  a l o n g  t h e  c c h a r a c t e r i s t i c s  ( t h e  second  e q u a t i o n  
i n  ( 1 . 4 ) )  i s  t h e  c o n c e n t r a t i o n  c o f  t h e  a d d i t i v e  i n  t h e  w a t e r  p h a s e .  When we t r a n s f o r m  t h e  
hodograph  (x, t)-~(Cw(x , t), Uw(x, t)), t h e  C w : c h a r a c t e r i s t i c s  a r e  c a r r i e d  i n t o  s im p le  c waves 
( t h e  second  e q u a t i o n  i n  ( 1 . 3 ) ) ,  and t he  c c h a r a c t e r i s t i c s  i n t o  s im p le  C W waves ( t h e  f i r s t  
e q u a t i o n  i n  ( 1 . 3 ) ) .  The c h a r a c t e r i s t i c  r a t e s  o f  t h e  sys t em a r e  ~, and ~=. To a s im p le  C w 
wave i n  t h e  phase  p l a n e  o f  t he  sy s t em (C W, U W) t h e r e  c o r r e s p o n d s  a c u r v e  c = c o n s t .  To a 
s imp le  c wave i n  t he  p l a n e  (C W, U W) t h e r e  c o r r e s p o n d s  a t r a j e c t o r y  such  t h a t  t h e  t a n g e n t  t o  
i t  a t  e a c h  p o i n t  {Cw, Uw(Cw, c)} p a s s e s  t h r o u g h  t h e  p o i n t  (R', R'), R ' = -  ep'/o~'. 

In  t h e  p l a n e  (C W, C A) (where C A i s  t h e  v o l u m e t r i c  c o n c e n t r a t i o n  o f  t h e  a d d i t i v e  i n  t he  
two p h a s e s ) ,  we s h a l l  r e p r e s e n t  by d o t s  t h e  v o l u m e t r i c  c o m p o s i t i o n s  o f  t h e  w a t e r  p h a s e ,  
M ( 1 -  c ,  c ) ,  t h e  o i l  p h a s e ,  L(O, ~ ( c ) )  and b o t h  p h a s e s ,  K(Cw, CW), r e s p e c t i v e l y  ( F i g .  2 ) .  
From the formulas C w = (i--c)s, C A =cs'-1-~(i--s) it follows that the points K, L, and M 
lie on the same straight line and the saturations of the phases are determined by the spring 
rule, s = KL/LM, i -- s = KM/LM. If the function ~ ~ ~(c), is known, then the triangle 
{Cw~0, CA~0, Cw ~-C a ~.~ i} is covered by the straight lines LM, which we shall call nodes, 
In Fig. 2 we illustrate the case of an additive which is preferentially soluble in oil ~ 
c, with nodes inclined to the Cw'axis at an obtuse angle arctana. If the additive is solu- 
ble in water better than in oil, the tangent of the angle of inclination of the nodes is 
~ > O. 

2. Discontinuous Solutions. The hyperbolic system of conservation laws (1.2) admits of 
discontinuous solutions. The Hugoniot conditions for the balance of water mass and the 
balance of additive mass at the discontinuity have the form [6] 

[CwlV = [Uwl, [~zCw + (ply = [aUw + ~1, 

where [A] is the jump of the quantity A, equal to the difference between the values before 
the discontinuity, A +, and after the discontinuity, A-; V is the velocity of the discontl- 
nulty. 

For It] ~0, the Hugoniot conditions are transformed to 

V = I U!w -~ [+]/[=]l {C-~ -~ [~]/[a]l-x, (2.  l )  
and for [c] ~0 to 

V =  (U + --U~v)(C~r--C~v) -1. ( 2 . 2 )  

The c o n d i t i o n  ( 2 . 1 )  means t h a t  t h e  p o i n t s  (C[v, U~v) and (C +,  U~)  l i e  i n  t h e  same s t r a i g h t  
l i n e ,  which  p a s s e s  t h r o u g h  t he  p o i n t  {-- [~]/[=], - -  [~]/[~]}. The i n c l i n a t i o n  o f  t h e  s t r a i g h t  
line is equal to the velocity of the discontinuity. Suppose that two nodes corresponding to 
the values c + and c- in the plane (Cw, Ca) intersect at a point with coordinates (R, T). 
Then ~+ -- T = ~ R= +, R = -- [~]/[=] is the abscissa of the point of intersection of the nodes. 
Letting [c] approach zero, we find that R' = --~'/=' is the abscissa of the instantaneous cen- 
ter of rotation of the node. 
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At those points of the phase plane (C W, UW ) at which dR'/dc = 0 the equation d~i/d~= 0 
is satisfied, Therefore the hyperbolic system (1,2) is not convex (truly nonlinear) [7], 
In the case dRt/dc H 0 we have d~i/d~-----0 , and the simple c waves go over Into contact c 
discontinuities. We have R = R' = const, ~ =--R=.i The Riemann invarlant which is constant 
along the C W characteristics can be expressed explicitly as I = (R --Uw)(B-- Cw)-1, The 
conditions at the c discontinuity (2.1) in this case take on the form V = I ~. All the 
nodes in the plane (Cw, C A ) intersect at one point, which has the coordinates (R, 0). The 
variation of the volumetric concentration of the additive in the oil as a function of the 
volumetric concentration of the additive in the water has the Langmuir form~ = Re(R -- I + e) -~ 
The relation between the mass concentrations also has a Langmuir form. 

As the criterion for stability at the discontinuity in the hyperbolic system (1.2) we 
take the following two conditions: 

i) The total number of characteristics in the zone before the jump with a velocity not 
exceeding the velocity of the discontinuity, and in the zone after the jump with a velocity 
not less than the velocity of the discontinuity, is three; 

2) in the interval between c- and c + the sign of the expression 

{~(=) - ~-) - (= - =~-)) [~]/[~]} 
coincides with the sign of the :difference (c + -- c-). 

Condition i coincides with the generalization of the condition for stability of the dis- 
continuity in the Lax form for the case of nonconvex hyperbolic systems; the characteristics 
whose velocity is equal to the velocity of the discontinuity are taken to be the ones coming 
into the discontinuity [7]. This condition ensures the unambiguous solvability of the lin- 
earized problem of interaction between a discontinuity and a small perturbation; the discon- 
tinuity is stable with respect to interaction with a small perturbation. 

The nonlinearized problem of the interaction of the discontinuity with a small pertur- 
bation is investigated by constructing a transformation of the hodograph, using the notation 
of the system (1.2) in Riemann invariants. In the case when the Lax condition i is satis- 
fied but condition 2 is not, there is a reversal of the front of the small perturbation 
until this perturbation reaches the discontinuity. This gives rise to a complex configura- 
tion, which does not converge to the initial discontinuity as time goes on. If conditions 
i and 2 are satisfied, then when we solve the nonlinearized problem of the interaction of 
the discontinuity with a small perturbation, the characteristics bring to the discontinuity 
a number of relations sufficient, together with the Hugoniot conditions, to determine unam- 
biguously the quantities e-, e +, C~, C~ and V; the discontinuity is stable. 

From conditions i and 2 we can derive the well-known generalization of O. A. Oleinik's 
stability condition for the case of nonconvex hyperbolic systems: The discontinuity is 
stable if the points (C~, U~)and(C~, U~) and can be connected by a continuous, curve (Cw01), 
Uw(~)); on which the Hugoniot conditions are satisfied for the jump (C~, Uw)-+(Cw(~), Uw(~)), 
where v~V(~)> V [7]. In comparison with the Lax condition i, the Oleinik condition adds 
the requirement that in the plane (~, ~) the parametrically specific curve {~), ~)} does not 
intersect a segment connecting points before and after the discontinuity (Fig. 3). 

The Hugoniot conditions and the stability conditions i and 2 are conditions for the ex- 
istence of a structure when we introduce into the system (i.i) a capillary jump in the pres- 
sure between the phases and the kinetics of the process of dissolution of the additive in 
the oil phase: 

_o ~  - -  c) F} ~ {(i -- c) A (s, 

o{ {es + r (1 - -  s)} + ~ ( e F  + ~ '  ( i  - -  F)} = ~A o-~x (c - -  ,~') A (s, c) 3~ '  

O~' /Ot  = [r (e) - -  r A (s, e) > 0, A ~ = eonst. 

(2.3) 

Here ~' is the running value of the concentration of the additive in the oil phase; T 
is the characteristic time for the establishment of a thermodynamic equilibrium distribution 
of the additive in the two phases; ~ is asmall parameter. The relation ~' = ~(c), corre- 
sponding to the equilibrium distribution of the additive between the phases, is replaced by 
the equation of linear kinetics of the dissolution of the additive in the oil phase. 
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The discontinuity (s-, c-)-+ (s +, c +) in the solution of the system (I.i) admits of the 
structure (2.3) if it can be obtained as the limit of the solutions of the system (2.3) 
as ~ -+ 0 �9 In a neighborhood of the discontinuity for small values of ~ we look for a 
solution in the form of a traveling wave s(co), c(co), ~'(co)where co = (x -- Vt)/~. After substi- 
tuting the form of the solution into the system ('2.3), we obtain a system of three ordinary 
differential equations. We integrate the first two equations with respect to ~, to within 
constants : 

A~ - -  c )A( s ,  c)ds/do) = (t  - -  c)F  - -  V(l - -  c)s -I- const ,  

A ~  - -  (p ' )A(s ,  c)ds/dco = c F  q-  q0'(l - -  F)  - -  V { c s  q-  ~o'(l - -  s)} ( 2 . 4 )  

-I- eonst ,  

d~ ' / do )  = (~p' - -  c p ( ~ ) ) / V L  

I f  ) ~ - + 0 , ,  t h e n  c o - + o o  when x - -  V t > O  and  c o - + - -  oo w h e n x - - V t  < 0 .  Then  t h e  c o n -  
d i t i o n  for the existence of the structure (2.3) is the condition for the existence of a 
continuous solution of the following boundary-value problem for the system (2.4): 

s(+_ oo) = s •  c ( _  oo) = c •  ~'(___ oo) = ~(c•  ( 2 . 5 )  

If the boundary-value problem (2.5) is solvable, then the points {s-, c-, ~(c-)} and {s +, c +, ~(c+)} 
are singular for the vector field (2.4). From this we obtain the Hugoniot conditions for 
the system (i.i). If we subtract from the first equation of (2.4) multiplied by c- ~' 
the second equation multiplied by i -- c, we obtain {~' --~(c-)} {~(c) --~(c-)}-1=R . This means 
that the points {~'(c0), ~(~)~ lie on the segment connecting the points {~(c-), =(C-)} and {~(c+), &(c+)} - 
We can therefore express c in terms of ~' and substitute into the third equation of (2.4) 

d~p' /dco = {(p ' - -  ~(c(cp ')) } /V'r .  ( 2 . 6 )  

The b o u n d a r y - v a l u e  p r o b l e m  ~ ' ( :L  oo) = ~(c• i s  s o l v a b l e  i f  and  o n l y  i f  t h e  s i g n  o f  t h e  d i f f e r -  
e n c e  (c + ~ c-) coincides with the sign of the right side of Eq. (2.6) [6]. When c + < c, , this 
means that the line segment connecting the points {~(c-), ~(c-)} and {~(c+),~(c+)} lies above the 
curve {~(c),=!c)} . We have thus obtained condition 2. The physical interpretation of the 
fact that ~ < ~(c) is that when c + < c- , in a neighborhood of the discontinuity, the equilib- 
rium concentration of the additive in the oil is greater than the running value of the 
concentration, and consequently the transition of the additive takes place from the displac- 
ing phase to the displaced phase. In a neighborhood of the discontinuity the process of re- 
distribution of the additive between the phases is unidirectional. * 

Theorem. The boundary-value problem (2.5) for the system (2.4) is uniquely solvable 
if and only if the Hugoniot conditions and stability conditions i and 2 are satisfied. 

3. Construction of Self-Similar Solutions. We consider the process of displacement 
of the oil by the solution of active additive with concentration c o from an unexploited 
stratum with saturation s, of bound water. The corresponding initial and boundary condi- 
tions for the system (1.2) have the form 

C w ( x ,  O) = s . ,  c ( x ,  O) : O, C w  (O, t) = C~v, c(O,  t) : c o . ( 3 . 1 )  

Here C~- (t  ~ c~176176 s~ ~ is the limiting saturation of the displacing phase when an 
additive solution with concentration c ~ is used. To the condition for the injection bore- 
hole (gallery) corresponds the point C~, lying at the node c = c ~ (see Fig. 2). To the con- 
dition in the stratum corresponds the point s,, lying on the straight line C A = 0, and the 
additive is not present. 

The problem (3.1) is the problem of the breakdown of the discontinuity for the system 
(i.i). It admits of a self'similar solution Cw(~), c(~), ~ = x/t. The self-similar solution 
of the system (i.I) can conssit of the following elements: 

- -  centered C W waves; the corresponding segment in the phase plane of the system (~, 
U W) will be denoted by CW; 

- -  centered c waves; the corresponding segment of the motion in the plane (Cw, U W) will 
be noted by c; 

- -  C W discontinuities; the corresponding notation is (C~, c)--J'~(C +, c); 
- c discontinuities; the notation is (C~,, c-)--Jc-+(C~, c+); 
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- -  zones of rest, i.e., of constant ~ and c; the notation is P. 

The self-similar substitution reduces the condition (3,1) to the form 

Cw(O) = C ~ ,  c (0 )  = @, Cw (oo) = s , ,  c ( o o )  = 0.  ( 3 . 2 )  

The solution of the problem (3.2)consists in finding a path (Cw(~), Uw(~)) in the plane 
(Cw, Uw) that will connect the points (C~,c ~ and (s., 0) and may consist of the five elements 
listed above. 

We consider first the case of a distribution function for the additive between the 
phases ~ = ~(c) such that in the interval between the values c= 0 and c = c o in the plane 
(~, ~) the segment connecting the points (0, 0) and {~(c~ ~(c~ lies no lower than the curve 
{~(c), ~(c)}. From the point Oc(R , R), where R =- ~(c~ ~ , we draw the tangent Oc --I --2 
to the curve c = c o (see Fig. i). 

The path corresponding to the solution of the problem (3.2) consists of motion in a 
O 

simple ~ wave from the point C W to the point i, a c jump from the point 1 to the point 2 
with velocity VI, a zone of rest at the point 2, and a C W jump from the point 2 to the point 
s, with velocity D: 

(c~, ~o)_ Cw - (c~, ~o)- ~--,.(c~, o ) -  P -  J-,. (~,, o). (3.3) 
Both jumps appearing in the solution are stable. Their velocities are found from the condi- 
tions at the discontinuities. Analogously[9] it can be shown that at the c discontinuity 
the Jouguet conditions V I = OUw(C~, c~ are satisfied. 

The self-slmilar solutlonhas the following form: 

�9 / t  = OUw/aCw,  c = co, o < x/ t  < v l  = OUw ( c ~ ,  co ) /ocw  

= (u~ - R ) ( c ~  - a )  -~, 

Cw = C~, c = O, V, = (U~- R ) ( C ~ -  R ) - l  < x/t  < D ,  
2 Cw = s , ,  c = O, D = gw (Cw - -  s , )  -~  < x / t  < co. 

I n  F i g .  4,  f o r  t < 1,  we show the  p r o f i l e s  f o r  the  d i s t r i b u t i o n  i n  t he  s t r a t u m  of  the  
c o n c e n t r a t i o n s  o f  the  w a t e r  and the  a d d i t i v e  when the  o i l  i s  d i s p l a c e d  by a s o l u t i o n  o f  a c -  
t i v e  a d d i t i v e  ( s o l i d  c u r v e )  and by w a t e r  (dashed  c u r v e ) .  The s t r u c t u r e  o f  the  d i s p l a c e m e n t  
zone i s  the  f o l l o w i n g :  Beyond the  zone o f  the  d i s p l a c e d  o i l  t h e r e  i s  a w a t e r - o i l  s w e l l  
w i t h  no a d d i t i v e ,  and a f t e r  t h a t  comes a zone o f  d i s s o l u t i o n  o f  the  a d d i t i v e ,  whose c o n c e n -  
t r a t i o n  in the water phase is equal to c o . The :water content of the output in the zone of 
the swell is equal to U~ (point 2 in Figs. 1-3). The occurrence of a water-oil swell is 
due to the presence of water in the stratum before the start of the exploitation. The solu- 
bility of the additive in the oil increases the separation of the displacement, front x = Dt 
from the front of concentration of the pumped-in additive x = Vtt. With increasing ~(c) 
the velocity Vt decreases, D increases, and the zone of the water-oil swell expands. 

At the front x = Vtt there is a complete jump in concentration, The mapping point in 
Figs. 1 and 2 moves from the point ~ at the borehole to the point i at the front. The 
concentration of the additive increases from C~ to C~ (see Fig. 2). The increase in the 
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additive concentration in the stratum from the injection borehole is an interesting feature 
related to the preferential dissolution of the additive in oil. If the additive dissolves 
better in water, then as we move along the node c = c e from the point ~ to the point i, the 
value of C A decreases. From Fig. 3 it can be seen that in comparison with the usual flooding, 
the use of an additive increases the period of water-free operation and reduces the volumet- 
ric concentration of water. Because part of the additive goes over into the displaced phase 
and the value of the residual oil saturation decreases when the oil is displaced by a solu- 
tion of active additive {i--~(c~ { l - - ~ ~  , in comparison with the usual flooding i -- s ~ , 
there is an increase in the degree of displacement in the last stage of the working. 

Figure 5 shows the profiles of the distribution of the values of C W and C A for various 
values of the initial flooding of the stratum, s(x, 0). Curve i corresponds to the values 
s, < s(x, O) < s', where s' is the point of intersection of the tangent to the curve c = 0 
at the point 2 with the curve c = 0. Curve 2 is constructed for the values s'< s(x, O)< s", 
where s" is the point of inflection of the curve c = 0. The ~i jump at the point s(x, 0) is 
preceded by motion in the centered CW wave along the curve c = 0. The profile of the quan- 
tity C W during the initial period of flooding coincides with the profile of the water sat- 
uration in the usual flooding. The same thing happens in the case of s"<s(x, 0)< C~ 
(curve 3). Curve 4 corresponds to the complete displacement of the oil from a heavily flood- 
ed stratum with an initial water saturation of s(x,O)> C~. Part of the additive from the 
displacing phase goes into the oil phase, which increases its saturation and mobility. For 
small values of c o , when the straight line passing through the point 0 c and s(x, 0) inter- 
sects the curve c = c ~ there arises the situation of complete displacement corresponding 
to curve 5. Beyond the unperturbed zone of the displaced oil and water there is an oil pla- 
teau containing the additive. Separation of the additive front from the displacement front 
does not take place. 

Let us consider the case of an arbitrary curve {~(c), =(c)} . We construct a convex en- 
velope of the curve in the interval (0, c o ) -- the graph of the minimal convex function 

= ~(~), whose points lie no higher than the curve (see Fig. 3). The envelope consists of 
segments of arcs of the curve and tangents to the curve. From Fig. 3 it can be seen that 
~'(ca)l~'(ca) = {~ -- ~~ ~(c~ = -- Re, ~'(c4)I~'(c4) = ~(c4)I~(c4) = -- R4 �9 In the self- 
similar solution of the problem of frontal displacement (3.1) the transition from the zone 
c = c o into the swell zone c = 0 is accomplished not by a full c jump but by a sequence of 
c jumps and centered c waves. We have c waves corresponding to the arc segments of the 
curve {~(c), =(c)} in the envelope, and c jumps corresponding to the tangents. Corresponding 
to the solution of the problem (3.1) for the case of the curve shown in Fig. 3, in the 
plane (Cw, Uw) , we have the path 

(C~ ,  ~ )  - -  Cw - -  (C~-, c ~ - -  J c - ~  ( C ~ ,  ca) - -  c - -  ( C ~ ,  c , ) - -  Jc ~ (C~ ,  0 ) - -  P - -  J ~ (s, ,  0). 

The velocities of:the first and second c jumps in the solutions are found from the 
Hugoniot condition on the discontinuity and the Jouguet condition 

v ,  = = ou (c , v ,  = 
R 3 - c ~  OCw R 4 - c ~  

Between the zone of pumped-in solution c = c o and the swell c = 0 we find a zone in which 
the value of c varies continuously from cs to ca. 

It should be noted that for the curve {~(c), ~(r under consideration, the problem (3.1) 
admits of a self-similar solution (3.3) in which the complete jump in the concentration is 
stable in Lax's sense but unstable in Oleinik's sense. It can be proved that the problem 
of the breakdown of an arbitrary discontinuity for a hyperbolic system (l.1) has a unique 
generalized self-similar solution at whose discontinuities the stability conditions 1 and 2 
are satisfied. 

4. Displacement of Oil by a Dose of SOlution of Active Additive. Because the addi- 
tives are so expensive, solutions of them are pumped in the form of finite volumes (doses) 
moved through the stratum by the water. The corresponding initial and boundary conditions 
for the system (1.2) have the form 

o) = o) = o, Cw io, 0 = Ic ' t < l ,  ( 4 . 1 )  
t t, t > l ,  
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c(o, t) /c o, (4.1) 
= Lo, t > L  

Up to time t = 1 it is the solution of additive that is pumped into the stratum, but after 
that time it is the water. At t < 1 the solution of the problem (4.1) coin~.ides with the 
self-similar solution of the problem of frontal displacement of the oil by the additive 
solution. At time t = 1 there is a breakdown of the discontinuity of the boundary condi- 
tion C~ = ~, c- --- 0, C +.= C~, c+= c o , and we begin to observe the interaction of the break- 
down configuration with the ~ wave of the self-similar solution. 

We consider the contact case of the Langmuir function of the distribution of the ad- 
ditive between the phases, ~ =- R~ . To the configuration of the breakdown in the dis- 
continuity of the boundary condition there corresponds the path in the plane (Cw, Uw)(I, O) 
-- ]--~ (s b, 0)-- P']c-+(C~,c o ). According to the condition (2.1), the point s5 lies at the 
intersection of the straight l'ines Oc- (C~, c o ) and Uw = 1. The resulting contact c dis- 
continuity if xo(t) -- three doses -- is propagated along the c characteristic. On this 
there is a complete Jump in the concentration, c-(xo) =0, c+(xe) =c o . Since in the region of 
the centered wave the inequality X/t = OUw/aCw< (R- Uw) (R- Cw) -x =dx,/dt is satisfied, 
it follows that all the C W characteristics, which are rays of the centered C W wave, inter- 
sect the curve of discontinuity x = xo(t). They bring the values of the invariant I + to 
the curve of discontinuity xo. From this we have 

Xo/ t = aV w ( C~  (Xo), c~ ) / OC w , dxo/ dt = X+ ( Xo). ( 4 . 2 )  

As the discontinuity in the centered wave of the quantity C+(xo) decreases from ~ to 
~, the velocity of the discontinuity increases to the value V, (see Fig. i). 

We integrate the second equation in (1.2) over the region of the plane(x, t) bounded 
by the contour 0, 0)-+(0, I)-~ (x0, t)-+ (0, 0) (see Fig. 4). According to Green's formula, the 
integral along this contour of the differential form OA= (~Uw q-~)dt- (=C W q-~)_dx is equal 
to zero. The form O A has the meaning of the volumetric flow of the additive. The integral 
of OA over the segment (0, 0)-~(0, I) is equal to =(c~ o )q-~(c ~ --c o . Since c-(xo) =6, 
the integral of eA along the curve xo is equal to zero. The physical meaning of this fact 
is ghat there is no return flow of the additive through the curve of the contact discontl- 
nuity. Therefore the integral of the form OA over the segment xo(t) is independent of time 
and is the first integral of the mo~ion of x = xo(t) [i0]: 

~t - -  1 + c o = a ( C ~  (xo), c ~ t, Z~ (Cw,  c) = R - -  U w ( C w ,  c) - -  (R - -  Cw)aUw/OCw.  ( 4 . 3 )  

From the system of two transcendental equations "consisting of the first equations of (4.2) 
and (4.3) for any instant of time t we can unambiguously determine the values of C~(xo)and x0. 
From the conditions at the discontinuity (the second equation in (4.2)) it is possible to 
determine C[v(xo). 

The system (4.2), (4.3) cab be solved by a geometric construction in the plane (C W, U W) 
[Ii]. We draw the tangent =o the curve c = c o at the point C+,(xo) until it intersects the s=raigh~ 
lines C W = R and UW= R at the points E and N, respectively (see Fig. i). Then by virtue of 

(4.3), we have 

o o z  = n - u w  (Xo), - ( n  - (=o)) a u , v / a c . .  = (R - + co)it, 

OoN = O~E(OUu,/OCw) -~ = (R - -  i + c~ 

To find the position of the back end of the dose at time t we must lay off a segment OcE and 
draw a tangent to the curve c = c o . The point C~,(zo) lies at the intersection of the straight 
line Oc- C~(xo) and the curve c = 0. 

In the zone of forward-pushing water c = O, and the problem (4.1) for the system (1.2) 
reduces to the mixed problem C~r(0, t) = i, Cw(xo, t) =C{~.(xo(t)) for the first equation of (1.2). 
The values of 6'~'(x0) are carried into the zone of forward-pushing water 0 < x < x0 along the 
C W characteristics. In Fig. i Cw(xo) > s o , the inclination of the C W characteristics is 
zero, the oil phase is motionless, and complete flooding of the output takes place at the 
moment when the back end of the dose reaches the extraction gallery. 

-u 

As t -~ ~, we have CW(xo) -+ C~v, dxo/dt-+ VI, ~ the volume of the dose .Q(t) = ~'zt -- xu(t) in- 
creases. We integrate the second equation of (1.2) over the region of the plane (x, t) 
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bounded by the contour (0, O) --+ (0, I) ~ (zo, t) .-+ (Vii , t)..+ (0, 0). Since the integrals of the 
form @A along the curves of the contact discontinuities x = xo(t) aDdx = Vii are equal to zero, 
we have r d 

co = ,i {~ (~") c~. (~, i) + q, (~.o)} dx. 

The meaning of the expression obtained above is the balance of the additive in the dose. 
If we let t -~ ~ in this expression, we obtain Q.(oo) =(R--i q-c o )(R-- C~) -I. The volume of 
the dose stabilizes as time goes on. Therefore in the case of plane-parallel displacement, 
the thickness of the dose stabilizes with time, whereas in the case of radial displacement 
it decreases asymptotically to zero. From time t = i the volume of the dose increases by a 
factor of t o = (R- i q-c~ -I. The back end of the dose has an inclined asymptote 
x = VI(Z -- to) (see Fig. 4). 

In order to find the average water saturation <s> in the stratum at the moment t W of 
complete flooding (when the back end of the dose approaches the extraction gallery), we in- 
tegrate the first equation in (1.2) over the region bounded by the contour (0, 0)i-~ (0, tw)-+ 
(xo(t~,O, t~,.)- .  (0, 0): 

<s> = c~, (~:o} + ( l  - u,, .  (c~,+,. (:~.0}, ~,,))(ow,v,,ac,~,) - ~ _  ~~ 

The quantity <s> is found as the point of intersection of the straight lines U~.=I and OcT, 
where T is the point of intersection of the tangent NE and the straight line Uw = i--c" 
(see Fig. I). With increasing volume of the dose (concentration of the additive c~ the 
point N (the curve c = c o ) is displaced to the right, the value of <s> increases, and the 
oil output increases. 

If dR'/dc < 0, the back end of the dose passes through the zone of the CW wave of the 
self-similar solution and will be propagated in the zone of the centered c wave. The veloc- 
ity of the back end increases to the velocity of the front of the dose as t ~ ~. The addi- 
tive concentration in the dose will decrease from some value at the back end to zero at the 
front. When dR'/dc>0, there will be an interaction between the configuration of the self- 
similar solution and the centered c wave of the configuration of the breakdown of the dis- 
continuity of the b~undary condition at time t = i. When the characteristic c = c ~ reaches 
the front of the dose, the zone c = c o disappears. The concentration of the additive 
increases from zero at the back end to some value at the front. In the cases listed as t 

=, we have ~(t)~tl/2, CA...t-I/=; in the case of plane-parallel displacement the thickness 
of the dose ,~]~ , and in the case of radial displacement it stabilizes. 

The author is grateful to Ya. E. Dorfman for his valuable comments and his great help 
with the work. 
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THE PERMEABILITY COEFFICIENT OF A POROUS MEDIUM SATURATED 

WITH A GAS OR LIQUID AFTER A CONFINED EXPLOSION 

A. N. Bovt, N. F. Zobov, 
V. V. Kadet, V. I. Selyakov, 
and E. A. Shurygin 

UDC 543.222 

Considerable scientific and practical interest attaches to the changes in infiltration 
properties of a medium produced by a confined explosion. One of the first attempts to de- 
termine the permeability coefficient in the region of such an explosion is to be found in 
[i]. Here we give results from processing experimental data obtained on a porous saturated 
medium after a confined explosion. The methods of examining the infiltration properties 
have been described in detail [2, 3]. The pressure difference and the fliud flow rate be- 
tween different points in the medium were determined in the stationary state. These data 
are used as initial ones in solving the two-dimensional inverse problem for the permeability 
coefficient. The method of solving the problem is applied in processing experimental re- 
suits obtained on a porous saturated medium after a confined explosion. 

Experimental Data. A method analogous to that of [2, 3] was used in examining the in- 
filtration properties of the medium after a confined explosion. The experimental explosions 
were performed in an artificially cemented medium having properties similar to those of real 
collectors and constituting a mixture of dressed sand, lime flour, and waterglass. The 
medium was placed in a cylindrical metal vessel of diameter 300 mm and height 350 mm. We 
used TEN charges of mass 0.4, 0.76, and 1.34 g. Each charge was placed at the middle of the 
model and was detonated from the center. 

A comprehensive study was made of the mechanical effects in the high-poroslty medium (m = 
25%). The results provided an answer on whether there is any difference in infiltration 
parameters for monolithic and porous media when acted on by the explosion energy, and what 
is the difference in these properties if the explosion is performed in a medium in whlch 
the pores are filled with air at atmospheric pressure or with a liquid. 

Tubes of diameter 3 mm were placed at various distances from the charge between the 
cavity and the periphery in the models to examine the changes produced by the explosion, 
The ends of the tubes were perforated and the opposite ends were connected to a measurement 
system. The tubes were placed in the horizontal or vertical plane of the charge, The model 
enclosed in the metal cylinder was hermetically sealed by flanges at the ends, Figure 1 
shows the disposition of the tubes. 

We determine the steady-state flow rate Qi of air or kerosene and the corresponding 
pressure difference between apair of tubes before and after explosion, The infiltration 
characteristic for theliquid-saturated medium was the ratio I~== Qi/Apl, where Qi is the 
steady-state flow rate and Ap~ =p~+i--P~ is the pressure difference between a pair of tubes, 
while i:= I, 2 ..... N represents the tube number. In a gas-saturated medium, F is defined by 

2 r = pD.  

The parameter change due to the explosion was evaluated from F/to, where Fo is the 
characteristic before the explosion. Figures 2 and 3 give the results from the experiments, 

Inverse Permeability Determination from Experimental Data. The pressure difference 
Api between tubes is determined not only by the permeability of the medium between them but 
also by the properties of adjacent regions, as well as by the geometry of the model. It is 
therefore necessary to solve the inverse problem in order to determine the rational depen- 
dence of~bhe permeability coefficient from the results. 

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskol Fiziki, No. 5, 
pp. 130-136, September-October, 1983. Original article submitted August 31, 1982. 
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